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Intrinsic modulation of pulse-coupled integrate-and-fire neurons
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Intrinsic neuromodulation is observed in sensory and neuromuscular circuits and in biological central pattern
generators. We model a simple neuronal circuit with a system of two pulse-coupled integrate-and-fire neurons
and explore the parameter regimes for periodic firing behavior. The inclusion of biologically realistic features
shows that the speed and onset of neuronal response plays a crucial role in determining the firing phase for
periodic rhythms. We explore the neurophysiological function of distributed delays arising from both the
synaptic transmission process and dendritic structure as well as discrete delays associated with axonal com-
munication delays. Bifurcation and stability diagrams are constructed with a mixture of simple analysis,
numerical continuation and the Kuramoto phase-reduction technique. Moreover, we show that, for asynchro-
nous behavior, the strength of electrical synapses can control the firing rate of the system.
@S1063-651X~97!14410-5#
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I. INTRODUCTION

There are two sources of modulation for neuronal circu
extrinsic, such as an external input, and intrinsic, such
variation of cell membrane properties. Intrinsic modulati
is thought to produce local changes in neuronal computa
in contrast to extrinsic modulation that can cause glo
changes@1#. This is well illustrated with the example of th
neuronal circuits found in the crustacean stomatogastric g
glion @2#. Altering cellular and synaptic properties of neuro
in this circuit causes different dynamical network behav
and hence the generation of distinct gastric rhythms@3#. Cir-
cuits that, by virtue of their intrinsic properties and synap
interactions, generate and control the activity of motor n
rons are called central pattern generators~CPGs!. Intrinsic
neuromodulation has been experimentally demonstrate
several biological CPGs@1,4,5#, where a diverse repertoire o
rhythmic motor behavior is possible in the absence of s
sory feedback. It is believed that a brief initial stimulus tri
gers the intrinsic neuromodulation that arises from neur
within the CPG circuit allowing the production of a pro
longed rhythmic pattern. For example, in the mollusc Tri
nia @1# and the tadpole Xenopus@4# the escape swim behav
ior is generated in this fashion.

The study of coupled oscillators has applications in u
derstanding CPG neuronal circuits such as those mentio
above. Indeed, systems of coupled nonlinear oscillators h
recently attracted much interest in neurobiology due to
discovery of synchronized oscillations in the cat visual c
tex @6#. Much of the theoretical work in this area uses t
phase-coupled oscillator formalism developed by Kuram
@7#. Moreover, there is also considerable interest in study
the dynamics of pulse-coupled neuronal models in which
details of individual spikes are included~see @8# for a re-
view!. The analysis of reciprocally connected neurons
561063-651X/97/56~5!/5809~10!/$10.00
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implications for understanding the mechanisms where
rhythm generation~periodic behavior! is produced by a CPG
in the absence of endogenous pacemaking cells. Red
versions of the Hodgkin-Huxley equations including deta
of ionic currents have been studied numerically@9–13# while
the analysis of coupled relaxation oscillators has allowe
more analytic approach@14#. We are careful to distinguish
three forms of oscillations: a synchronous state, where n
rons oscillate in phase, an antisynchronous state, where
rons oscillate in antiphase, and an asynchronous state, a
between the other two where neurons oscillate at an inter
diate phase. In theoretical studies of pulse-coupled neur
networks with fast synaptic responses, synchronization
typically obtained with excitatory connections between ne
rons @15–17#. However, neuronal CPGs and cortical tiss
can maintain synchronous, antisynchronous, and async
nous behavior. For example, the CPG for swimming in
tadpole Xenopus maintains an antiphase oscillatory rhy
to generate waves of bending along the spinal cord. Inh
tory synaptic connections undoubtedly play an important r
in preventing large-scale synchronization. However, rec
work suggests that other intrinsic mechanisms may also
to desynchronization. Van Vreeswijket al. @18# have shown
that pulse-coupled integrate-and-fire neurons can de
chronize if the postsynaptic currents are sufficiently slo
Hence, distributed delays from synaptic transmission p
cesses can effect the synchrony of simple coupled ne
oscillators. This effect is also observed when more deta
single neuron models such as Hodgkin-Huxley are studie
the limit of weak coupling with the phase reduction tec
nique of Kuramoto@18,19#. Also, Sherman and Rinzel@20#
have shown numerically that strong electrical coupling lea
to synchronous behavior for a pair of coupled neurons,
that weak electrical coupling can lead to antiphase osc
tions. Similar observations have previously been made
5809 © 1997 The American Physical Society
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5810 56S. COOMBES AND G. J. LORD
Mulloney et al. @21#. A more detailed analysis of this phe
nomenon was undertaken by Hanet al. @22# using a combi-
nation of numerical simulation and the weak coupling ph
reduction technique. They show that global electrical c
pling leads to bursting behavior as well as the previou
observed desychronization. The neuronal propagation de
present in a system of interacting neurons are also thoug
provide a mechanism for desynchronization. For the cas
two pulse-coupled oscillators incorporating small delays
return-map analysis@23,24#, which generalizes the semina
work of Mirollo and Strogatz@15#, reinforces this idea. Fur
thermore, in the presence of signal delays, the phase-cou
oscillator model of Kuramato possesses multiple synch
nous solutions@25# for two neurons and exhibits extreme
rich asynchronous behavior for a population that interacts
time-delayed nearest-neighbor coupling@26#. The Kuramoto
phase reduction technique has also recently been used to
lyze the effects of axonal propagation delays@27# and den-
dritic structure on neuronal synchronization@28–30#. For
neurons with no extended structure, propagation delays
solely dependent upon neuronal separation while neu
that filter synaptic input through a passive dendritic tree h
responses that depend upon the distributed delays ar
from the diffusion of a signal along the tree and the spa
location of the synapse.

In this paper we investigate sources of intrinsic neu
modulation for a simple model CPG. We consider a circ
of two identical integrate-and-fire neurons mutually coup
by identical excitatory synapses. The classification of
namical behavior in different parameter regimes can be u
to model the effects of intrinsic neuromodulation provid
that the model maintains contact with biological reality. W
focus on features of the single neuron that affect the neur
response to synaptic stimulation. Since these in turn con
ute to the nature of a network oscillation we are able
isolate the role that various cellular and synaptic proper
have in determining circuit function. Importantly, in contra
to work discussed above and extending an earlier paper@31#,
we show that the competition between various neuro
length and time scales has important consequences for
rophysiological function. For example, the distributed de
that arises from the synaptic transmission process may re
in a slow neuronal response, which in turn stabilizes an as
chronous network rhythm. However, the inclusion of a fu
ther delay, arising from say a finite axonal propagation
locity, can lead to a stable synchronous rhythm. Variation
the period of oscillation, as well as the phase, is also imp
tant in many biological CPGs. Electrical synapses betw
neurons are suggested as a possible source for the mo
tion of the firing period.

In detail, we take single spikes oraction potentialsas
basic entities, communicated via chemical synapses. Pre
aptic action potentials are considered to induce postsyna
currents. These are described with functional forms t
closely approximate real synaptic currents. Furthermore,
include transmission delays that model the finite axo
propagation time for action potentials. An integrate-and-
model with linear cell membrane properties is essentia
solvable using the variation-of-parameters formula. In Sec
this approach is used to study the dynamics of the cell b
~soma! of two such pulse-coupled neurons. In biologic
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CPGs with small neuronal populations, gap junctions or el
trical synapses contribute significantly to network activi
The above model is extended to include bidirectional elec
cal synapses and reexpressed such that cell membrane p
tials evolve according to a linear Volterra integrodifferent
equation. Once again the variation-of-parameters formul
used in Sec. III to formulate solutions. Finally, in Sec. IV
we consider the effects of dendrites on phase synchroniza
by idealizing the dendritic tree as a semi-infinite on
dimensional structure described by a second-order linear
tial differential equation, namely, the cable equation@32#.
Assuming that the neurons intrinsically oscillate, a co
pletely analytic discussion of the effects of the spatial lo
tion of the synaptic input is possible using the phase red
tion technique of Kuramoto@7#. Results are exact for wea
synaptic coupling and the case when the somatic feedb
current from the soma to the dendrites is negligible. T
stability of solutions is shown to depend upon both the na
ral frequency of oscillation and the point of synaptic conta

Throughout the paper detailed numerical analysis, us
AUTO94 @33#, is used to explore the solution spaces genera
using the variation-of-parameters formula. In essence, m
vated by biological CPGs with intrinsic neuromodulation, w
explore the role that variation of propagation time dela
rise and fall time of postsynaptic current pulses, strength
chemical and electrical coupling, and dendritic structure c
have on the phase of periodic firing patterns for two pul
coupled integrate-and-fire neurons. The consequences o
work for larger arrays are discussed in Sec. V.

II. PULSATILE COUPLING WITH DELAYS
IN AN INTEGRATE-AND-FIRE MODEL

We begin by considering two identical integrate-and-fi
neurons with mutual excitatory coupling. Each neuron is
garded as a point processor with no extended dendritic st
ture. The state variablef i(t), i 51,2, is used to represent th
cell membrane potential at neuron 1 and 2, respectively.
neurons are assumed to fire wheneverf i(t) reaches some
thresholdh, after whichf i(t) is reset to some resting leve
taken as zero~see Fig. 1!. Denoting the time at which neuro
i fires for thenth occasionTn

i , since the initial firing time
T0

i , the potentialsf i(t) evolve according to the linear ordi
nary differential equations~ODEs!

df i

dt
52

f i

t
1I i~ t !, tP~Tk

i ,Tk11
i !, kPZ ~1!

with the strongly nonlinear reset conditions

lim
e→01

f i~Tk
i 2e!5h, lim

e→01

f i~Tk
i 1e!50. ~2!

Here, I i(t) represents the input to neuroni from neuronj ,
which is therefore dependent upon the firing history of t
system. Equation~1! is simply the differential equation of an
RC circuit of cell membrane resistanceR, capacitanceC,
and hence, membrane time constantt5RC. Between firing
events the unique solution to Eq.~1! is given using the
variation-of-parameters formula,
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56 5811INTRINSIC MODULATION OF PULSE-COUPLED . . .
f i~ t !5E
Tk

i

t

e2~ t2t8!/tI i~ t8!dt8, tP~Tk
i ,Tk11

i !. ~3!

The currentI i(t) should reflect the fact that postsynap
currents are generated by the firing events orspikesof the
presynaptic neuronj . These spikes are often modeled
simple Diracd-function pulses@15,17,34#. However, the ef-
fective input to the postsynaptic neuron has a longer tem
ral duration due to the synaptic transmission process.
particular pulse shape that approximates the rise and fall
of real synaptic currents is the so-calleda function @35#. The
consequences of the temporal duration of synaptic cond
tance changes within integrate-and-fire models has been
cussed~for the case ofa functions! by several authors
@18,36,37#. One should also be careful to incorporate dela
due to finite axonal propagation times into the total synap
current. With this in mind, we write the input to neuroni
from neuronj as a sum of delayeda functions such that

I i~ t !5 (
n>1

P~ t2Tn
j 2td!Q~ t2Tn

j 2td!, j Þ i , ~4!

where td represents the axonal propagation delay time
P(t) takes the form of ana function:

P~ t !5ga2te2at. ~5!

The strength of interaction is measured with the parameteg,
while the exponential rise~and fall! rate of the synapse i
equal toa, such that the maximal synaptic response occur
a timea21 after the arrival of an action potential. The ste
functionQ(x) in Eq. ~4! is equal to 1 forx.0 and vanishes
for x<0. In the steady periodic firing state defined
limk→`Tk11

i 2Tk
i [D ~independent of initial conditions!, the

infinite sum in Eq.~4! can be reduced to a convergent ge
metric progression. In fact the input to neuron 2~assuming
that neuron 1 last fired att50! takes the formI 2(t)5I (t),
where

FIG. 1. Schematic diagram of the periodic solution for tw
pulse-coupled integrate-and-fire neurons with thresholdh, period
D, and relative phaseu.
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I ~ t !5
ga2e2a~ t2td!

~12e2aD! H ~ t2td!1
De2aD

~12e2aD!J ,

tP@ td ,td1D!. ~6!

We now introduce a phaseu, 0<u<1, such that if neuron 1
fires at t5Tk

1 then neuron 2 fires atTk
25Tk

12uD, again at
Tk11

2 5Tk
11D(12u). This periodic behavior is illustrated in

Fig. 1. In this caseI 1(t)5I 2(t1uD) and outside their range
the I i(t) are periodic:

I 1~ t1nD!5I 1~ t !, tP@ td2uD,td1D~12u!!, ~7!

I 2~ t1nD!5I 2~ t !, tP@ td ,td1D!, nPZ. ~8!

To find the phaseu and periodD for steady state periodic
behavior we consider the simultaneous equations

f1~D!5h, f2~D2uD!5h. ~9!

For the membrane potentialsf i(t), i 51,2, given by Eq.~3!
and I i(t) given by Eq.~4!, we may explicitly perform the
integration in Eq.~9! and hence reduce Eq.~9! to a coupled
system of algebraic equations. A simple condition on
phase and period is formed from the express
G(u,D)5f1(D)2f2(D2uD)50, where

G~u,D!5e2D/tE
0

D

dt8et8/t@ I ~ t81uD!2I ~ t82uD!#.

~10!

Two obvious phase solutions, from the periodic properties
I (t), are the synchronized solution withu50 ~or equiva-
lently u51! and the antisynchronous solutionu51/2. More-
over, if u is a solution, then (12u) is also a solution. By
manipulating the expression forG(u,D) it is possible to
form the relationf2(D2uD)5h2G(u,D). Supposeu is
slightly larger than a stable equilibrium value. Then neuro
should fire later to restore the correct value ofu. This re-
quires thatf2(D2uD) should be smaller thanh or equiva-
lently that G(u,D) should be an increasing function ofu
near the equilibrium value. Otherwise a reset will occ
causing a dramatic change in the network dynamics. He
the condition for stability of a solution is defined by

]G~u,D!

]u
.0. ~11!

All numerical results are produced using the continuat
and bifurcation softwareAUTO94 @33#. Although primarily
written for ODEs,AUTO94 can compute solution branches fo
algebraic systems of the form~9!, detect simple bifurcation
points, and compute bifurcating branches. Note that if E
~9! cannot be reduced explicitly to an algebraic system th
a numerical quadrature method~such as composite Simp
son’s rule! may be applied to approximate the algebraic s
tem. The stability of the branches may be established
evaluating the inequality~11!.

In the numerical results that follow we have chosen a ti
scale such thatt51 and the constantsg andh are fixed with
g50.4, h50.25. Pseudoarclength continuation was p
formed in eithera ~with fixed td! or td ~with fixed a!, solv-
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FIG. 2. u vs a bifurcation dia-
gram witht51 for varying delay
times. The four branches abov
and below the antisynchronou
state (u51/2) correspond to four
differing values of the time delay
td . The branch bifurcating from
u51/2 at the lowest value ofa
corresponds to the case with n
delay, td50. Successive bifurca-
tions for progressively largera
correspond to the case with de
lays, td50.025, td50.05, and
td50.25, respectively. Solid
~dashed! lines represent stable
~unstable! solutions.
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ing for the phase differenceu and periodD in either case. It
should be noted that on some of the branches in Figs.
bifurcations inD were also found, for given values ofu.

In Fig. 2 we plot the bifurcation diagram for the phaseu
versusa in the presence of small delays and also fortd50
~reproducing the results of Van Vreeswijcket al. @18#!. For
small values of the synaptic rate constanta there are two
possible states showing either complete synchrony,u50,1,
or complete antisynchrony,u51/2. Only the antisynchro-
nous state is stable. With increasinga, corresponding to pro-
gressively faster synapses, there is a pitchfork bifurcatio
a critical value ofa5ac and two additional equilibria are
born. The antisynchronous solution loses stability and c
tinues as an unstable branch. The two new states are s
and have intermediate phases, i.e., are neither synchro
nor antisynchronous and are referred to as asynchronous
a→` the a function approximates a Diracd pulse and the
stable asynchronous solutions approach closely to the
fectly synchronized solution~at u50 or u51!. For small
delays (td<0.25), once again there is a pitchfork bifurcatio
from a stable antisynchronous solution leading to the c
ation of two new stable states for some criticala. An in-
crease intd causes further desynchronization in the se
that the critical value fora increases and for a fixeda.ac

the solution branches move inward toward the antisynch
nous solution. In Figs. 3, 4, and 5 we show bifurcation d
grams foru versustd with several differenta values. Figure
3, with a53,ac ~for td50!, shows that for smalltd the
antisynchronous solution is the only stable one. Increasintd
leads to the creation of two new unstable branches, wh
eventually coexist with the synchronous solution. This p
nomenon of bifurcation and approach to the synchron
solution is repeated at larger values oftd but with an inter-
change of solution stabilities. For a fixed phaseu, this leads
to an alternating sequence of stable and unstable solu
with increasingtd . In Fig. 4 we show behavior in the phas
u as the delaytd varies in the regimea.ac ~for td50!. For
small delays (td<0.25), Fig. 4, witha55, simply reex-
5
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presses the results shown in Fig. 2 to the right of the larg
value of ac. Note that astd is increased from zero the de
synchronization effect becomes complete in the sense
the stable intermediate phase solutions join with the antis
chronous solution attd;0.5. Beyond this point the antisyn
chronous solution becomes stable. Furthermore, two n
stable solutions are born that approach the synchronous
with a further increase intd . A host of other solutions are
born with increasingtd . Moreover, the possibility exists fo
multiple synchronous and antisynchronous solutions to e
with differing periods and stabilities. Note that fora<5.85
~Figs. 2, 3, 4! AUTO94 detected the bifurcations along th
u51/2 branch, whereas fora.5.9 no bifurcations were de
tected following this branch. However, the bifurcatin
branches persist fora.5.9, as is evident from Fig. 5. Thi

FIG. 3. u vs td bifurcation diagram fora53. Stable branches
are denoted by solid lines and unstable branches by dashed
Regions where stable and unstable branches coexist are de
with dotted lines. Note the existence of multiple solutions with
fixed value of the phase differenceu and the checkerboard patter
of stable-unstable branches.
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56 5813INTRINSIC MODULATION OF PULSE-COUPLED . . .
figure was formed by continuing points on the branches
Fig. 4 in a up to a510 and then continuing each branch
the time delaytd .

Recently Ernstet al. @23# and Mather and Mattfeldt@24#
have analyzed the effect of propagation delays, in a sim
system to that considered, communicating via strict Dirad
pulses. For excitatory couplings both conclude that
td,D/2 two new stable phase solutions are possible, s
porting the idea that propagation delays can induce de
chronization. By taking a sufficiently large value ofa it is
possible to make an interesting comparison with this wo
In Fig. 5 we explore thepulsedregime by settinga510 and
construct theu vs td bifurcation diagram foru>1/2 ~solu-
tions with u,1/2 are easily generated by symmetry!. For
small td the synchronous solution (u50,1) is stable while
the antisynchronous (u51/2) one is unstable. With increas
ing td the antisynchronous solution remains unstable, wh
an initially stable synchronous solution desynchronizes w
increasingtd . At td.D/2, (td.0.31), a stable solution is
born fromu51/2, which eventually approaches the synch
nous state with a further increase intd . Furthermore, as be

FIG. 4. u vs td bifurcation diagram fora55. Labeling for sta-
bility is the same as in Fig. 3.

FIG. 5. u vs td bifurcation diagram fora510 ~fast synaptic
response!. Labeling for stability is the same as in Fig. 3. Note th
solutions withu,1/2 may be generated by symmetry.
n

r

r
p-
n-

.

e
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-

fore, other solutions are created with increasingtd . In fact in
this pulsed regime (a→`) with td,D/2 our results are in
agreement with those of Ernstet al. and Mather and
Mattfeldt @24#. However, in the regime where their analys
does not apply (td>D/2) we see the creation of new solu
tions and multiple mixed stability synchronous and antisy
chronous solutions. For very largetd all solutions approach
either the synchronous or antisynchronous states, both
which possess stable solutions for some periodD. Note that
multistable dynamical systems have important applicati
as pattern recognition and memory storage devices. Ind
the conditions under which time-delayed recurrent loops
integrate-and-fire neurons exhibit multistability has recen
been investigated@38#.

III. ELECTRICAL AND CHEMICAL COUPLING

In addition to chemical synapses, there are many
amples of direct electrical connections between cells. Th
connections occur via channels that span the presynaptic
postsynaptic membranes and are calledgap junctions. Elec-
trical synapses are present in many invertebrate nervous
tems such as the gastric CPG of the previously mentio
crab. For CPGs found in invertebrates with small numbers
neurons it is common to find reciprocal inhibition betwe
bursting neurons in conjunction with electrical coupling. I
terestingly, electrical synapses have recently been found
simple vertebrate, namely, between motor neurons in the
nal cord of the Xenopus tadpole@39#. Hence, dynamics of
coupled neuronal oscillators including direct electrical co
nections may have a role in determining the functional s
nificance of gap junctions.

As before we consider the evolution of the membra
potential f i(t), i 51,2, for two identical pulse-coupled
integrate-and-fire neurons, firing periodically~of period D!.
We now incorporate the effects of a bidirectional gap jun

FIG. 6. Schematic diagram of the periodic solution for tw
pulse-coupled integrate-and-fire neurons with electrical coupl
The effect of reset is communicated between the two neurons
the direct electrical coupling and causes the discontinuous evolu
of somatic potentials over a firing intervalD.
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5814 56S. COOMBES AND G. J. LORD
tion. To describe the dynamics~illustrated in Fig. 6!, it is
convenient to introduce the following notation:

f i~ t1Tj !5f i j ~ t !, tP~0,D̃j !, i , j 51,2, ~12!

where Tj denotes the time that neuronj last fired,
D̃15D(12u) and D̃25uD. The total periodD5D̃11D̃2 .
The reset conditions,~2!, become

lim
e→01

f i~Ti1e!5f i i ~0!50, i 51,2 ~13!

lim
e→01

f i~Ti2e!5f i j ~D̃j !5h, i , j 51,2, iÞ j . ~14!

From Kirchoff’s law the cell membrane potentials evol
according to

df i j

dt
52

f i j

t
1s~f ı̄ j2f i j !1I i~ t1h iuD!, tP~0,D̃j !,

~15!

with ī 51 if i 52 and vice versa,h150 andh2521. The
parameters51/(rC) incorporates the resistancer of the
electrical synapse between the two neurons and reflects
strength of electrical coupling. Note that the effect of rese
communicated between neurons due to this coupling
gives rise to the discontinuous evolution of cell membra
potentials over a whole periodD ~as shown in Fig. 6!. For
simplicity we drop all discussion of discrete time delays a
set td50. However, their effects may be incorporated w
the method used in Secs. II and III if one so wishes. O
again the variation-of-parameters formula may be used
write a solution as

f i~ t !5e2etf i j ~0!1E
0

t

e2e~ t2t8!@ I i~ t81h iuD!

1sf ı̄ j~ t8!#dt8, tP~0,D̃j !, ~16!

where e5t211s. Hence, by substitution of Eq.~16! into
Eq. ~15!, we may form the integro-differential equation

df i j

dt
52ef i j 1E

0

t

H~ t2t8!f i j ~ t8!dt81Fi j ~ t !, ~17!

whereH(t)5s2e2et and

Fi j ~ t !5I i~ t1h juD!1se2etf ı̄ j~0!

1sE
0

t

e2e~ t2t8!I ı̄ ~ t81h juD!dt8. ~18!

Thus, between resets, thef i j (t) evolve according to a linea
Volterra integral-differential equation. Each neuron beha
like the original integrate-and-fire neuron of Sec. II, but w
an external inputFi j (t) @instead of justI i(t)# and an addi-
tional feedback contribution that takes into account electr
coupling via the gap junction. The feedback transfer funct
is H(t). A unique solution of the model may be construct
that generalizes that of Sec. II. Since both the convolut
kernelH(t) and the functionFi j (t) are continuous on (0,D̃j )
the
s
d

e

d

e
to

s

l
n

n

we can apply the following result due to Burton@40#. If Z(t)
is the solution of the homogeneous equation

dZ

dt
52eZ1E

0

t

H~ t2t8!Z~ t8!dt8, Z~0!51 ~19!

and if f i j (t) is a solution of Eq.~17! on (0,D̃j ) then

f i j ~ t !5Z~ t !f i j ~0!1E
0

t

Z~ t2t8!Fi j ~ t8!dt8. ~20!

Hence,f i j (t) is uniquely determined by the initial conditio
f i j (0) together with a variation of parameters solution~20!.
With the use of Laplace transforms and the Bromwich th
rem, Eq.~19! may be solved as

Z~ t !5 1
2 ~ee1t1ee2t!, ~21!

where e62e6s. We may now self-consistently solve th
equations for the somatic potentials to determine both
phaseu and periodD in the steady state. Simultaneous
solving f11„D(12u)…5X1 , f22(uD)5X2 , f12(uD)5h
and f21„D(12u)…5h, yields the unknownsu, D, f12(0),
andf21(0), whereX1,2 must be determined self-consistent
with X1,2,h. Numerically we apply numerical quadrature
reduce these equations to an algebraic system. As before
construct the functionG(u,D) as

G~u,D!5f12~uD!2f21„D~12u!…50. ~22!

The condition for stability is]G(u,D)/]u.0. Note that in
the limit of no electrical couplings→0 we recover the so-
lutions for the somatic potentials given in Sec. II.

In Fig. 7 we plot the variation of relative phaseu as
a function of the strength of electrical interactions for
a restricted set of parameters, namely,a55.5, X156.583
1022, X259.9431022, f12~0!51.2831023, and
f21~0!54.0831022 with all remaining parameters as i
Sec. II. It appears from numerical experiments that new
lutions cannot be created but rather that weak coupling
favor nearly antisynchronous phase relationships, wh

FIG. 7. Variation of phaseu in a network with both electrical
and chemical coupling as a function of the strength of electr
interaction. a55.5, X156.5831022, X259.9431022, f12(0)
51.2831023, andf21(0)54.0831022.
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strong electrical coupling can increase the synchrony of
lutions. More interesting is the observation that sm
changes in the strength of electrical coupling can lead
sharp changes in the period of oscillation. This can be s
in Fig. 8 for the corresponding plot of Fig. 7 for variation
the periodD with s. Such an effect has also been observ
for asynchronous periodic rhythms generated in a sim
system of two chaotic neurons@41#. From a functional point
of view the mixture of electrical and chemical coupling pr
vides a high sensitivity for period regulation of the asynch
nous periodic state.

IV. EFFECTS OF DENDRITIC STRUCTURE

In general, the diffusive nature of dendrites means that
single neuron somatic response is a convolution of the s
aptic input with the response function of the dendritic tre
Furthermore, the precise ordering of the axonal fiber sys
in cortical regions suggest that the synaptic locations of
puts play a role in circuit function@42#. Rospars and Lansky
@43# have described the response of a compartmental m
in which it is assumed that dendritic potentials evolve wi
out any influence from the nerve impulse generation proc
However, the electrical coupling between the soma and d
drites means that there is a feedback signal across the
drites whenever the somatic potential resets. This situatio
described in detail by Bressloff@44#. The basic idea is to
eliminate the passive component of the dynamics~the den-
dritic potential! to yield a Volterra integrodifferential equa
tion for the somatic potential. An iterative solution to th
integral equation can be constructed in terms of a sec
order map of the firing time, in contrast to a first order m
as found in models lacking dendritic structure@45#. Unfortu-
nately, a description of two pulse-coupled compartmen
models with reset is analytical unwieldy, although som
work on this problem has been done by Crook@28#. How-
ever, substantial progress can be made by considering
dendritic tree of a neuron to be idealized as a semi-infin
one-dimensional cable@32#. Furthermore, it is illuminating to
work in thephase-interaction representation, rather than t
pulse-interaction picture used until now. This can b

FIG. 8. Variation of periodD for the system defined in Fig. 7
highlighting the functional significance of the strength of electri
coupling in modulating system firing frequency.
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achieved using the formalism developed by Kuramoto a
others@7,18# and, in this particular instance, helps to isola
the contribution of dendritic structure to neuronal synchro
zation. We show that the synchronous solution can cha
from stable to unstable as the point of synaptic input mo
further from the soma~see Fig. 9!. Independent work by
Crook @28# on cells connected by synapses at the ends
finite dendritic cables~with variable space constant! rein-
forces these results. Both Crook@28# and Bressloff and
Coombes@29# propose that this mechanism may be used
neural circuits, whereby proximal connections encoura
synchrony and more distal encourage asynchrony or anti
chrony.

In general, cell membrane properties are such that the
a nonlinear relationship between membrane ionic current
the transmembrane potential@35,46#. In fact a more realistic
scenario than so far considered is given by the equations~for
i 51,2!

]Vi~j,t !

]t
5D

]2Vi~j,t !

]j2 2
Vi

t̃
1Ei~j,t !, ~23!

df i

dt
5 f ~f i !1r0@Vi~0,t !2f i~ t !#, 0,f i~ t !,h.

~24!

Equation~23! is the standard cable equation for the dendr
potential Vi(j,t) of an unbranched dendrite on neuroni ,
with dendritic coordinatejPR1. The decay constantt̃ and
the diffusion constantD may be related to underlying cellu
lar properties of dendritic tissue and in the following analy
we fix length and time scales by settingD5 t̃51. The soma
is considered to be sited at positionj50 on the cable and
Ii(t)5r0@Vi(0,t)2f i(t)# is the current density flowing to
the soma from the cable. The equation for the dendritic
tential Vi(j,t) has inputEi(j,t) representing the synapti
input, taken to be absent at the soma. Equation~23! is
supplemented by the boundary condition2]Vi /]juj50
5Ii(t). Equation~24! ~without the r0-dependent coupling
term! for the somatic potentialf i(t) of a neuron was origi-
nally proposed by Abbott and Kepler@47# through a system-

l

FIG. 9. Interaction schematic for two pulse-coupled integra
and-fire neurons with idealized dendritic structure. Synaptic in
occurs at synapses located a distancej0 from the soma.
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atic reduction of the Hodgkin-Huxley equations. Furthe
more, they have shown using experimental data thatf (f)
can be fitted with a cubic@47#. In order to simplify our analy-
sis, we shall assume that the current flowing from the so
to the dendrite is negligible, which amounts to imposing
homogeneous boundary condition]Vi /]juj5050. After ab-
sorbing a term2r0f i into the definition of the function
f (f i) in Eq. ~24! we have thatIi(t) is transformed to
r0Vi(0,t). We now solve Eq.~23! for Vi(j,t) in terms of the
synaptic inputs and setj50 to give

Ii~ t !52r0E
2`

t

dt8E
0

`

dj8K~j8,t2t8!Ei~j8,t8!, ~25!

where K(j,t)5e2t2j2/4t/A4pt is the response or Green
function of the infinite cable equation. For concreteness
consider synaptic input on the cable to impinge at locationj0
only such that

Ei~j,t !5d~j2j0!I i~ t ! ~26!

whereI i(t) has the form of Eq.~4!.
The analytical intractability of this model is much reduc

with the aid of averaging techniques valid in the limit
weak coupling. Indeed a nonlinear transform may be use
study nonlinear integrate-and-fire neurons in the framew
of pulse-coupled phase models@8#. In the uncoupled state
each identical neuron is imagined to fire with a natural
riod D at times2u iD. Weak coupling of the two neuron
will induce some relative phase relationship. The dynam
variable of interest in the weak-coupling regime is the ph
of each oscillator. Specifically, following@18# one can apply
the following nonlinear transform to Eq.~24!:

u i~ t !1
t

D
5c„f i~ t !…[

1

D E
0

f i ~ t ! df8

f ~f8!
, ~27!

with D5*0
hdf8/ f (f8). The phase variablesu i satisfy

du i

dt
5J~ t/D1u i !Ii~ t !, tP„2u iD,~2u i11!D…,

~28!

where J(z)5D21/@ f +c21(z)#, and J(z1n)5J(z), nPZ.
Neuron i fires whenf i5h or equivalently, from Eq.~27!,
when u i1t/D5n for integer n. The corresponding firing
times aret5(n2u i)D and hence

I i~ t !5I ~ t1u jD!, tP†2u jD,~2u j11!D…, ~29!

where I (t) is given by Eq.~6! and I (t1nD)5I (t). How-
ever, to simplify matters further still we shall drop discussi
of transmission delays by settingtd50 and ignore the shap
of postsynaptic currents so thatI (t)5g(nd(t2nD). Now
assume that the termt/D varies much more quickly than
either of theu i(t), which is true for weak coupling. Then w
can average the right side of Eq.~28! over one periodD and
substitute Eqs.~25!, ~26!, and~29! to obtain
-

a
e

e

to
rk

-

l
e

du i

dt
5H~u j2u i !, ~30!

with

H~u!5gE
0

`

dtJ~ t2u!K~j0 ,tD! ~31!

and we have absorbed the factor of 2r0 within the coupling
strengthg. As discussed in@18#, the functionJ(t) is the
phase interaction function of the model in the case of
instantaneous synapse. The functionH~u! involves the con-
volution of the instantaneous interaction functionJ(t) with
the dendritic response functionK(j0 ,t), which depends ex-
plicitly on the locationj0 of the synapse on the dendriti
cable. It follows thatH~u! can be written as a function of th
phase difference,u5u12u2 , by invoking the periodicity
properties ofJ(t) and I (t). The evolution of the phase dif
ference may now be written as

du

dt
52G~u!, G~u!5H~u!2H~2u!. ~32!

Solutions can be found by solving Eq.~32! for u in the
steady state,G(u)50, with D given by Eq.~27!. Solutions
are stable if]G(u)/]u.0. SinceH~u! is periodic with period
1, G~u! always has zeros atu50,1/2,1. For simplicity, we
shall takeJ(t)52sin 2pt, which is known to be a good
approximation whenf of Eq. ~24! has an experimentally
determined form@19#. Using the following Fourier represen
tation of the fundamental cable solution:K(j0 ,t)
5(2p)21*2`

` dkeikj02e(k)t, wheree(k)5k211, the stability
functionG~u! becomes

G~u!5g sin~2pu!E
2`

` dk

2p
eikj0A~k! ~33!

with

A~k!5
e~k!

e~k!21v2 , v5
2p

D
. ~34!

Hence, stability is partly dependent upon wheth
Â5*2`

` dkeikj0A(k).0. The integralÂ can be evaluated by
closing the contour in the upper-half complexk plane as

Â5
p

r
e2r j0 cos~b/2!@r j0 sin~b/2!1b/2#, ~35!

with r 25A11v2 and tanb5v, 0<b<p/2. We deduce
from Fig. 10 that as the distancej0 of the synapse from the
soma increases from zero,Â reaches a critical value where
change in solution stability can occur. Increasingj0 still fur-
ther produces alternating bands of stability and instability
solutions toG(u)50. In fact, the synchronous state (u50,1)
is stable forÂ.0 and the antisynchronous state (u51/2) is
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56 5817INTRINSIC MODULATION OF PULSE-COUPLED . . .
stable for Â,0 for excitatory coupling (g.0). A similar
checkerboard structure of stable-unstable solutions with
creasing axonal communication delay is seen in Figs. 3
Hence,j0 plays an analogous role to that of a time dela
since the time of maximal response at the soma due to
input atj0 increases withj0 . Interestingly thistime to peak
can be as large as a few hundred msec whereas axonal d
are typically 1–10 msec.

V. DISCUSSION

The nonlinear dynamics of populations of pulse-coup
neuron models is of great importance in modeling the g
eration of biological rhythms. In general, neuronal pools c
produce antisynchronous, asynchronous, as well as sync
nous firing patterns. Hence, identifying the biological fe
tures that lead to such behaviors is important. In this pa
we have focused on a very simple model of a central pat
generator~CPG! built from two pulse-coupled integrate-and
fire neurons. The inclusion of simple measures of axo
propagation delay, the pulse shape of postsynaptic curre
and electrical synapses can all be analyzed using eleme
analysis in conjunction with numerical techniques for co
structing bifurcation diagrams. The inclusion of a dendri
structure complicates such an approach, yet it is a vital c
ponent of most single-neuron anatomies. However, the
tiotemporal filtering properties of dendrites can be isola
with a reduction of the model, valid for intrinsically oscilla
ing weakly coupled neurons. Moreover, such a redu
model is exactly solvable. By maintaining contact with ne
rophysiological reality both discrete and distributed dela
arise naturally within the model CPG circuit description. I
deed, the rate of synaptic response~linked to the opening and
closing of ion channels! allows the possibility of asynchro
nous periodic rhythms for sufficiently slow synaps
@a;O(1) with t51#, while the synchronous state is pr
ferred for instantaneous synapses. Another form of dist
uted delay arises from the diffusive nature of a passive d
dritic tree since thetime to peakof a signal depends on th

FIG. 10. Sign ofÂ, j0 vs v. Black ~white! regions correspond
to Â.0 (Â,0). Note the checkerboard pattern of stabilit
instability, for say the synchronous solution, with increasing syn
tic distance,j0 , for a fixed natural neuronal oscillator frequencyv.
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distance of synaptic input from the soma. For some range
distance of the synapse from the soma the synchronous
can be destabilised in favor of an antisynchronous perio
rhythm. The more obvious delays inherent in many neuro
systems come in the form of communication delays. N
only can these discrete delays lead to stable asynchro
solutions for fast synaptic responses, but they allow the
mation of multiple stable periodic orbits with the same pha
but differing period. Hence, they are obviously important
the construction of memory devices@38#. An interesting is-
sue arises concerning transitions between these attractor
will be addressed elsewhere. Moreover, delays of the ab
type have other important consequences in larger syst
than those considered here. Interestingly, if the effect
communication delay between neurons in a one-dimensio
array of weakly coupled integrate-and-fire neurons is su
ciently large, then the synchronous state can be destabil
in favor of a state of stable traveling waves. This picture
valid when effective somatic responses arefast compared to
the natural frequency of neuronal oscillation, but is altered
the presence of say slow synapses or dendritic structur
expected from the results presented here~see@30# for further
discussion!. The distributed and discrete delays arising na
rally in neuronal systems may therefore be responsible
the oscillatory waves observed in such structures as the
factory cortex where distributed delays arise from both s
aptic and dendritic properties and discrete delays arise f
the large axonal separations between neurons@28,29#. An
important source of control of the period of the system
sides in the strength of electrical connections between n
rons. The combination of synaptic and gap junctions is ty
cal for many small CPG circuits found in invertebrates. T
sharp variation of period with small change in strength
electrical coupling is also observed by Huertaet al. @41#, for
the case of two coupled chaotic neurons, who suggest
the function of such a combination is to allow modulation
the period of asynchronous rhythms. Such a result highlig
the importance of exploring the consequences of simple
logical features in establishing rhythmic behavior in coup
neuronal systems, since useful conclusions can be dr
about neurophysiological function. Finally, let us make t
point that many CPG circuits are of thehalf-center@48# va-
riety, which rely upon reciprocal inhibition for rhythm gen
eration rather than reciprocal excitation as considered h
In this case one requires extra physiological factors such
post-inhibitory rebound@49,50# or the inclusion of an exter-
nal driving current for rhythm maintenance. In the case o
half-center oscillator with reciprocal inhibition and a suf
ciently large external driving current~so that firing can occur
in the absence of any coupling!, bifurcation diagrams are
qualitatively the same as those presented here, but wi
reversal of stability for all solution branches.
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