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Intrinsic modulation of pulse-coupled integrate-and-fire neurons
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Intrinsic neuromodulation is observed in sensory and neuromuscular circuits and in biological central pattern
generators. We model a simple neuronal circuit with a system of two pulse-coupled integrate-and-fire neurons
and explore the parameter regimes for periodic firing behavior. The inclusion of biologically realistic features
shows that the speed and onset of neuronal response plays a crucial role in determining the firing phase for
periodic rhythms. We explore the neurophysiological function of distributed delays arising from both the
synaptic transmission process and dendritic structure as well as discrete delays associated with axonal com-
munication delays. Bifurcation and stability diagrams are constructed with a mixture of simple analysis,
numerical continuation and the Kuramoto phase-reduction technique. Moreover, we show that, for asynchro-
nous behavior, the strength of electrical synapses can control the firing rate of the system.
[S1063-651%97)14410-5

PACS numbegps): 87.10+e¢, 02.30.Ks, 47.20.Ky

[. INTRODUCTION implications for understanding the mechanisms whereby
rhythm generatioriperiodic behavioris produced by a CPG
There are two sources of modulation for neuronal circuitsin the absence of endogenous pacemaking cells. Reduced
extrinsic, such as an external input, and intrinsic, such asersions of the Hodgkin-Huxley equations including details
variation of cell membrane properties. Intrinsic modulationof ionic currents have been studied numericf8ly13 while
is thought to produce local changes in neuronal computatiothe analysis of coupled relaxation oscillators has allowed a
in contrast to extrinsic modulation that can cause globamore analytic approachil4]. We are careful to distinguish
changed1]. This is well illustrated with the example of the three forms of oscillations: a synchronous state, where neu-
neuronal circuits found in the crustacean stomatogastric gamens oscillate in phase, an antisynchronous state, where neu-
glion[2]. Altering cellular and synaptic properties of neuronsrons oscillate in antiphase, and an asynchronous state, a state
in this circuit causes different dynamical network behaviorbetween the other two where neurons oscillate at an interme-
and hence the generation of distinct gastric rhyth&jsCir-  diate phase. In theoretical studies of pulse-coupled neuronal
cuits that, by virtue of their intrinsic properties and synapticnetworks with fast synaptic responses, synchronization is
interactions, generate and control the activity of motor neutypically obtained with excitatory connections between neu-
rons are called central pattern generat@®Gs3. Intrinsic  rons[15-17. However, neuronal CPGs and cortical tissue
neuromodulation has been experimentally demonstrated ioan maintain synchronous, antisynchronous, and asynchro-
several biological CPG4d.,4,5|, where a diverse repertoire of nous behavior. For example, the CPG for swimming in the
rhythmic motor behavior is possible in the absence of sentadpole Xenopus maintains an antiphase oscillatory rhythm
sory feedback. It is believed that a brief initial stimulus trig- to generate waves of bending along the spinal cord. Inhibi-
gers the intrinsic neuromodulation that arises from neuron$ory synaptic connections undoubtedly play an important role
within the CPG circuit allowing the production of a pro- in preventing large-scale synchronization. However, recent
longed rhythmic pattern. For example, in the mollusc Trito-work suggests that other intrinsic mechanisms may also lead
nia[1] and the tadpole Xenopuig] the escape swim behav- to desynchronization. Van Vreeswigk al.[18] have shown
ior is generated in this fashion. that pulse-coupled integrate-and-fire neurons can desy-
The study of coupled oscillators has applications in un-chronize if the postsynaptic currents are sufficiently slow.
derstanding CPG neuronal circuits such as those mentionddence, distributed delays from synaptic transmission pro-
above. Indeed, systems of coupled nonlinear oscillators haveesses can effect the synchrony of simple coupled neural
recently attracted much interest in neurobiology due to thescillators. This effect is also observed when more detailed
discovery of synchronized oscillations in the cat visual cor-single neuron models such as Hodgkin-Huxley are studied in
tex [6]. Much of the theoretical work in this area uses thethe limit of weak coupling with the phase reduction tech-
phase-coupled oscillator formalism developed by Kuramotaique of Kuramotd18,19. Also, Sherman and Rinz¢20]
[7]. Moreover, there is also considerable interest in studyindnave shown numerically that strong electrical coupling leads
the dynamics of pulse-coupled neuronal models in which théo synchronous behavior for a pair of coupled neurons, but
details of individual spikes are includgdee[8] for a re-  that weak electrical coupling can lead to antiphase oscilla-
view). The analysis of reciprocally connected neurons hasions. Similar observations have previously been made by
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Mulloney et al. [21]. A more detailed analysis of this phe- CPGs with small neuronal populations, gap junctions or elec-
nomenon was undertaken by Hanal.[22] using a combi- trical synapses contribute significantly to network activity.
nation of numerical simulation and the weak coupling phasd’he above model is extended to include bidirectional electri-
reduction technique. They show that global electrical coucal synapses and reexpressed such that cell membrane poten-
pling leads to bursting behavior as well as the pre\/ious|>lia|5 evolve according to a linear Volterra integrodifferential
observed desychronization. The neuronal propagation dela@fluation. Once again the variation-of-parameters formula is
present in a system of interacting neurons are also thought {¢sed in Sec. Il to formulate solutions. Finally, in Sec. IV,
provide a mechanism for desynchronization. For the case oF€ consider the effects of dendrites on phase synchronization
two pulse-coupled oscillators incorporating small delays, £Y 1dealizing the dendritic tree as a semi-infinite one-
return-map analysi23,24, which generalizes the seminal dlmerjsmnal_structure_ described by a second-order linear par-
work of Mirollo and Strogat£15], reinforces this idea. Fur- tial differential equation, namely, the cable equati@2].

thermore, in the presence of signal delays, the phase-coupl suming that the neurons intrinsically oscillate, a com-
oscillator model of Kuramato possesses multiple synchrop etely analytic discussion of the effects of the spatial loca-

nous solutiong25] for two neurons and exhibits extremely tion of the synaptic input is possible using the phase reduc-

rich asynchronous behavior for a population that interacts vidon tec_:hnlque .Of Kuramotg7]. Results are exact for weak
time-delayed nearest-neighbor couplir&$]. The Kuramoto synaptic coupling and the case Whe'? the_ somatic feedback
phase reduction technigue has also recently been used to al%%‘—”?m from thg soma to the dendrites is negligible. The
lyze the effects of axonal propagation deld23] and den- stability of solut|ons_|s shown to depend upon bOth the natu-
dritic structure on neuronal synchronizati¢#8—30. For ral frequency of oscillation and the point of synaptic contact.

neurons with no extended structure, propagation delays areu;rggrgl[gegom the dptaper (Ijeta'lﬁd nulmtgrlcal analysis, us;n%
solely dependent upon neuronal separation while neurorfs 1S USed 10 explore the solution spaces generate

that filter synaptic input through a passive dendritic tree havcl_*’s'tn?j Lheb\_/alnapor;-g;;%ararr_lﬁtgrts_formula. In e?jse]ntc_e, moti-
responses that depend upon the distributed delays arisingcd by biclogica S With Intrinsic neuromoauiation, we
plore the role that variation of propagation time delays,

from the diffusion of a signal along the tree and the spatial- d fall ti f " i oul i th of
location of the synapse. rise and fall time of postsynaptic current pulses, strength o

In this paper we investigate sources of intrinsic neuro_chemlcal and electrical coupling, and dendritic structure can

modulation for a simple model CPG. We consider a circuithave on _the phase of periodic firing patterns for wo pulse-_
of two identical integrate-and-fire neurons mutually coupledCOUpled integrate-and-fire neurons. The consequences of this
by identical excitatory synapses. The classification of dy—Work for larger arrays are discussed in Sec. V.

namical behavior in different parameter regimes can be used

to model the effects of intrinsic neuromodulation provided Il. PULSATILE COUPLING WITH DELAYS

that the model maintains contact with biological reality. We IN AN INTEGRATE-AND-FIRE MODEL

focus on features of the single neuron that affect the neuronal ) L ) . !
response to synaptic stimulation. Since these in turn contrib- W& begin by considering two identical integrate-and-fire

ute to the nature of a network oscillation we are able toh€urons with mutual excitatory coupling. Each neuron is re-

isolate the role that various cellular and synaptic propertieg2rded as a point processor with no extended dendritic struc-
have in determining circuit function. Importantly, in contrast {Ure- The state variablé;(t), i=1,2, is used to represent the
to work discussed above and extending an earlier peidr cell membrane potential at neuron 1 and 2, respectively. The
we show that the competition between various neuronafl€Urons are assumed to fire wheneye(t) reaches some
length and time scales has important consequences for nefiresholdh, after which(t) is reset to some resting level,
rophysiological function. For example, the distributed delayt@ken as zergsee Fig. 1. Denoting the time at which neuron
that arises from the synaptic transmission process may resultfires for thenth occasionT,, since the initial firing time
in a slow neuronal response, which in turn stabilizes an asynlo, the potentialsp;(t) evolve according to the linear ordi-
chronous network rhythm. However, the inclusion of a fur-nary differential equationéODES
ther delay, arising from say a finite axonal propagation ve-
locity, can lead to a stable synchronous rhythm. Variation of do; P O
the period of oscillation, as well as the phase, is also impor- Tt -~ 7 T, te(MoTigy), keZ (D)
tant in many biological CPGs. Electrical synapses between
neurons are suggested as a possible source for the modula- . .
tion of the firing period. with the strongly nonlinear reset conditions

In detail, we take single spikes @ction potentialsas , ,
basic entities, communicated via chemical synapses. Presyn- lim ¢i(Ty—e)=h, lim ¢(T+e€)=0. 2
aptic action potentials are considered to induce postsynaptic =04 =04
currents. These are described with functional forms that
closely approximate real synaptic currents. Furthermore, wélere, 1;(t) represents the input to neurérfrom neuronj,
include transmission delays that model the finite axonalhich is therefore dependent upon the firing history of the
propagation time for action potentials. An integrate-and-fireSystem. Equatiofil) is simply the differential equation of an
model with linear cell membrane properties is essentiallyR C circuit of cell membrane resistand® capacitanceC,
solvable using the variation-of-parameters formula. In Sec. Iand hence, membrane time constantRC. Between firing
this approach is used to study the dynamics of the cell bodgvents the unique solution to Eql) is given using the
(soma of two such pulse-coupled neurons. In biological variation-of-parameters formula,
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h . ga,Ze—a'(t—td) Ae—a’A
/; I(t): (1_efaZS) (t_td)+(1_efax) ’
Neuron1 !
telty,tg+A). (6)
We now introduce a phas# 0< #<1, such that if neuron 1
5 : fires att=T; then neuron 2 fires af2=Ti— A, again at
< A - A '; T2, ,=Ti+A(1- 6). This periodic behavior is illustrated in
- 0A —p - OA —p Fig. 1. In this casé,(t)=1,(t+ #A) and outside their ranges
i : thel;(t) are periodic:
h | H
[((t+NnA)=1.(1), te[tg—OA,tg+A(1-6)), (7)
Neuron 2

|2(t+nA):|2(t), tE[td,td+A), nEZ. (8)

To find the phase& and periodA for steady state periodic
behavior we consider the simultaneous equations

¢1(A)=h, ¢(A—6A)=h. (€)

- A —-— A —P

FIG. 1. Schematic diagram of the periodic solution for two . . .
pulse-coupled integrate-and-fire neurons with threstiglperiod 0T the membrane potentiad(t), i =1,2, given by Eq(3)
A, and relative phase. and I;(t) given by Eq.(4), we may explicitly perform the

integration in Eq.(9) and hence reduce E) to a coupled
¢ o system of algebraic equations. A simple condition on the
¢i(t)=f ie‘“‘”’fli(t’)dt’, te(Ty,Tisq). (3 phase and period is formed from the expression

Tk G(6,A)=¢1(A)— ¢o(A—0A)=0, where
The currentl;(t) should reflect the fact that postsynaptic IV T )
currents are generated by the firing eventsspikesof the G(6,A)=e fo dt’e” "TI(t"+ 0A) —I(t" = 6A)].
presynaptic neurorj. These spikes are often modeled as (10)

simple Dirac-function pulseg15,17,34. However, the ef-
fective input to the postsynaptic neuron has a longer tempofwo obvious phase solutions, from the periodic properties of
ral duration due to the synaptic transmission process. Ongt), are the synchronized solution with=0 (or equiva-
particular pulse shape that approximates the rise and fall timgntly = 1) and the antisynchronous solutiés= 1/2. More-
of real synaptic currents is the so-calledunction[35]. The  over, if 6 is a solution, then (% 6) is also a solution. By
consequences of the temporal duration of synaptic condugnanipulating the expression faB(6,A) it is possible to
tance changes within integrate-and-fire models has been difgrm the relation¢,(A—6A)=h—G(6,A). Supposef is
cussed(for the case ofa functions by several authors s|ightly larger than a stable equilibrium value. Then neuron 2
[18,36,37. One should also be careful to incorporate delaysshould fire later to restore the correct value ®fThis re-
due to finite axonal propagation times into the total synaptiquires thate,(A — #A) should be smaller thah or equiva-
current. With this in mind, we write the input to neuron |ent|y that G(Q,A) should be an increasing function of
from neuronj as a sum of delayed functions such that near the equilibrium value. Otherwise a reset will occur,
causing a dramatic change in the network dynamics. Hence,
L(t)= E P(t—TL—td)®(t—TL—td), £, (4 the condition for stability of a solution is defined by
n=1
dG(6,A)

wherety represents the axonal propagation delay time and EY >0.
P(t) takes the form of amr function:

(11)

All numerical results are produced using the continuation
P(t):gazte*“‘. (5) and bifurcation softwarenuto94 [33]. Although primarily
written for ODESs,AUTO94 can compute solution branches for
The strength of interaction is measured with the paramgter algebraic systems of the for®), detect simple bifurcation
while the exponential ris¢and fal) rate of the synapse is points, and compute bifurcating branches. Note that if Eq.
equal toa, such that the maximal synaptic response occurs at9) cannot be reduced explicitly to an algebraic system then
a time «~ ! after the arrival of an action potential. The step a numerical quadrature methdduch as composite Simp-
function ®(x) in Eq. (4) is equal to 1 fox>0 and vanishes son’s rule¢ may be applied to approximate the algebraic sys-
for x<0. In the steady periodic firing state defined bytem. The stability of the branches may be established by
lim_..T,,;—Ti=A (independent of initial conditionsthe  evaluating the inequalityll).
infinite sum in Eq.(4) can be reduced to a convergent geo- In the numerical results that follow we have chosen a time
metric progression. In fact the input to neuror{agasuming scale such that=1 and the constantsandh are fixed with
that neuron 1 last fired dt=0) takes the form »(t)=1(t), g=0.4, h=0.25. Pseudoarclength continuation was per-
where formed in eithera (with fixed ty) or ty (with fixed «), solv-
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- FIG. 2. 6 vs «a bifurcation dia-
0.8 T gram with 7=1 for varying delay
— times. The four branches above
0-7 4 T} and below the antisynchronous
0.6 | — _ state @=1/2) correspond to four
/ differing values of the time delay
0.5 f ol tq. The branch bifurcating from
) 0=1/2 at the lowest value ok
0.4 corresponds to the case with no
delay, t4=0. Successive bifurca-
0.3 _ —_— . ;
I —— tions for progressively largew
0.2 | correspond to the case with de-
] lays, ty=0.025, t4=0.05, and
0.1 - \i\ B tq=0.25, respectively. Solid
' ] (dashed lines represent stable
0.0 T T ] T T T (unstablé solutions.
0.0 5.0 10.0 15.0 20.0
2.5 7.5 12.5 17.5
o

ing for the phase difference and periodA in either case. It presses the results shown in Fig. 2 to the right of the largest
should be noted that on some of the branches in Figs. 2—%alue of a®. Note that ag, is increased from zero the de-
bifurcations inA were also found, for given values éf synchronization effect becomes complete in the sense that
In Fig. 2 we plot the bifurcation diagram for the phage the stable intermediate phase solutions join with the antisyn-
versusa in the presence of small delays and alsotigr 0 chronous solution at;~0.5. Beyond this point the antisyn-
(reproducing the results of Van Vreeswijek al. [18]). For  chronous solution becomes stable. Furthermore, two new
small values of the synaptic rate constanthere are two stable solutions are born that approach the synchronous state
possible states showing either complete synchr@sy0,1,  with a further increase ity. A host of other solutions are
or complete antisynchronyg=1/2. Only the antisynchro- born with increasind,. Moreover, the possibility exists for
nous state is stable. With increasiagcorresponding to pro- multiple synchronous and antisynchronous solutions to exist
gressively faster synapses, there is a pitchfork bifurcation awith differing periods and stabilities. Note that fer<5.85
a critical value ofa=a® and two additional equilibria are (Figs. 2, 3, 4 AuT094 detected the bifurcations along the
born. The antisynchronous solution loses stability and con#=1/2 branch, whereas far>5.9 no bifurcations were de-
tinues as an unstable branch. The two new states are stalierted following this branch. However, the bifurcating
and have intermediate phases, i.e., are neither synchronobganches persist fox>5.9, as is evident from Fig. 5. This
nor antisynchronous and are referred to as asynchronous. As
a— the « function approximates a Diraé pulse and the 1 7 - ' T
stable asynchronous solutions approach closely to the per- / (
fectly synchronized solutioiat 6=0 or §=1). For small
delays €;=<0.25), once again there is a pitchfork bifurcation
from a stable antisynchronous solution leading to the cre-
ation of two new stable states for some critieal An in- 06 L
crease inty causes further desynchronization in the sense
that the critical value fow increases and for a fixed> a°
the solution branches move inward toward the antisynchro- 04 |
nous solution. In Figs. 3, 4, and 5 we show bifurcation dia-
grams foré versusty with several differenx values. Figure
3, with a=3<a’ (for t4=0), shows that for smalty the
antisynchronous solution is the only stable one. Increasing \
leads to the creation of two new unstable branches, which 0 L , s
eventually coexist with the synchronous solution. This phe- 0 0.5 1 L5

nomenon of bifurcation and approach to the synchronous 4
solution is repeated at larger valuestgfbut with an inter- FIG. 3. 6 vs ty bifurcation diagram fora=3. Stable branches

change of solution stabilities. For a fixed phasehis leads  are denoted by solid lines and unstable branches by dashed lines.
to an alternating sequence of stable and unstable solutionggions where stable and unstable branches coexist are denoted
with increasingty . In Fig. 4 we show behavior in the phase with dotted lines. Note the existence of multiple solutions with a

6 as the delayy varies in the regime:> a® (for ty=0). For  fixed value of the phase differen@eand the checkerboard pattern
small delays {34=<0.25), Fig. 4, witha=5, simply reex- of stable-unstable branches.
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h

Neuron 1

X2

4 (sz(())

Neuron 2

FIG. 4. 6 vs ty bifurcation diagram forw=>5. Labeling for sta-
bility is the same as in Fig. 3. - A — - A —

figure was formed by continuing points on the branches in G- 6. Schematic diagram of the periodic solution for two

Fig. 4 in a up to =10 and then continuina each branch in pulse-coupled integrate-and-fire neurons with electrical coupling.

thg.time gelgyt @= 9 The effect of reset is communicated between the two neurons via
d .

the direct electrical coupling and causes the discontinuous evolution
Recently Ernset al. [23] and Mather and Mattfeld24] ¢ < atic potentials over a firing interval

have analyzed the effect of propagation delays, in a similar

system to that considered, communicating via strict Dsac fore, other solutions are created with increadingin fact in

pulses. For excitatory couplings both conclude that forthis pulsed regime d—) with t;<A/2 our results are in
< [ [ - : d
ty<<A/2 two new stable phase solutions are possible, sup greement with those of Emsstal. and Mather and

porting the idea that propagation delays can induce desyrg, attfeldt [24]. However, in the regime where their analysis

chrorjization. By taking a sufficiently Iarge valqe afi} is does not apply t,=A/2) we see the creation of new solu-
Fnols:?él?lg xerzsgﬁ)rzntr:gﬁ{:esgrl%i?én &? gza?n;v;rltg I;n\:\jlorktions and multiple mixed stability synchronpus and antisyn-
construct thed vs ty bifurcation diagram for6=1/2 (solu- c_hronous solutions. For very Ia_rg@ all solutions approach
tions with §<1/2 are easily generated by symmatriFor elther the synchronous or antlsynchronous_states, both of
small ty the synchronous solutiondE&0,1) is stable while Wh'c.h POSSESS sta_ble solutions for some petiodNote t.hat_

the antdisynchronoust9(= 1/2) one is uns’table With increas- multistable dynamlpal systems have important gpphcatlons
. . . L . as pattern recognition and memory storage devices. Indeed,
ing tq the antisynchronous solution remains unstable, WhIIﬁhe conditions under which time-delayed recurrent loops of

an initially stable synchronous solution desynchronizes wit el e ) i
. . .~ . Integrate-and-fire neurons exhibit multistability has recently
increasingty. At ty=A/2, (t4=0.31), a stable solution is been investigatefs]

born from 6= 1/2, which eventually approaches the synchro-
nous state with a further increasetin Furthermore, as be-
lll. ELECTRICAL AND CHEMICAL COUPLING

In addition to chemical synapses, there are many ex-
amples of direct electrical connections between cells. These
connections occur via channels that span the presynaptic and
postsynaptic membranes and are catiegh junctions Elec-
trical synapses are present in many invertebrate nervous sys-
tems such as the gastric CPG of the previously mentioned
crab. For CPGs found in invertebrates with small numbers of
neurons it is common to find reciprocal inhibition between
bursting neurons in conjunction with electrical coupling. In-
terestingly, electrical synapses have recently been found in a
simple vertebrate, namely, between motor neurons in the spi-
nal cord of the Xenopus tadpo|&89]. Hence, dynamics of
coupled neuronal oscillators including direct electrical con-
nections may have a role in determining the functional sig-
nificance of gap junctions.

As before we consider the evolution of the membrane

FIG. 5. 6 vs t4 bifurcation diagram fora=10 (fast synaptic ~ potential ¢;(t), i=1,2, for two identical pulse-coupled
responsg Labeling for stability is the same as in Fig. 3. Note that integrate-and-fire neurons, firing periodicallyf period A).
solutions with<1/2 may be generated by symmetry. We now incorporate the effects of a bidirectional gap junc-
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tion. To describe the dynamiddlustrated in Fig. 6, it is
convenient to introduce the following notation:

Ht+Th=a;(t), te(04), i,j=12, (12

where T denotes the time that neuron last fired,
A1=A(1-6) and A,=0A. The total periodA=A;+A,.
The reset conditiong?2), become

lim ¢;(T'+e)=¢;(0)=0, i=1,2 (13
e—0,
lim ¢i(T'—e)=a;(A)=h, i,j=12, i#j. (14

e—0,4

From Kirchoff's law the cell membrane potentials evolve

according to

%:_@""U(‘ﬁi_(ﬁij)"'li(t_" 7;0A), tE(O,KJ’),
(15

with i =1 if i=2 and vice versay,;=0 and n,=—1. The
parametero=1/(rC) incorporates the resistance of the
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FIG. 7. Variation of phas® in a network with both electrical
and chemical coupling as a function of the strength of electrical
interaction. «=5.5, X;=6.58Xx1072, X,=9.94x10"2, ¢,(0)
=1.28<10" 3, and ¢,,(0)=4.08< 10 2.

we can apply the following result due to Burtp#0]. If Z(t)
is the solution of the homogeneous equation

electrical synapse between the two neurons and reflects the

t
strength of electrical coupling. Note that the effect of reset is —=—€eZ+ J’ H(t—t")Z(t")dt’,

Z(0)=1 (19

dt 0

communicated between neurons due to this coupling and
gives rise to the discontinuous evolution of cell membrane . ) ) ~
potentials over a whole periodl (as shown in Fig. p For ~ and if #;;(t) is a solution of Eq(17) on (04;) then
simplicity we drop all discussion of discrete time delays and ¢
setty=0. However, their effects may be incorporated with ¢ij(t)=Z(t)¢ij(0)+f Z(t—t")F(t)dt’. (20
the method used in Secs. Il and Il if one so wishes. Once 0
again the variation-of-parameters formula may be used t?_|
ence,¢;;

write a solution as (t) is uniquely determined by the initial condition

¢i;(0) together with a variation of parameters soluti@g).
t , With the use of Laplace transforms and the Bromwich theo-
¢i(t)=e*“¢ij(0)+f e Ut + 56A) rem, Eq.(19) may be solved as
0

Z(t)=4(e e ), (21)

+o¢(t)dt, te(04), (16)

where e. — e* . We may now self-consistently solve the
equations for the somatic potentials to determine both the
phase# and periodA in the steady state. Simultaneously
solving ¢11(A(1—6))=Xy1, ¢2(0A)=X;, ¢1(0A)=h

and ¢,1(A(1— 6))=h, yields the unknowng), A, ¢45(0),

and ¢,4(0), whereX; , must be determined self-consistently
with X; »<<h. Numerically we apply numerical quadrature to
reduce these equations to an algebraic system. As before, we
construct the functiols(6,A) as

G(0,A)= 1 0A) — dp(A(1—-6))=0.

The condition for stability is9G(6,A)/d6>0. Note that in
the limit of no electrical couplingr—0 we recover the so-
Thus, between resets, tigg;(t) evolve according to a linear |utions for the somatic potentials given in Sec. II.

Volterra integral-differential equation. Each neuron behaves In Fig. 7 we plot the variation of relative phagtas

like the original integrate-and-fire neuron of Sec. Il, but witha function of the strength of electrical interactian for

an external inpuf;;(t) [instead of just;(t)] and an addi- a restricted set of parameters, namely5.5, X,=6.58x
tional feedback contribution that takes into account electricall 02,  X,=9.94x1072, ¢;,(0)=1.28x10"%, and
coupling via the gap junction. The feedback transfer functiong,,(0)=4.08<x10"2 with all remaining parameters as in
is H(t). A unique solution of the model may be constructedSec. Il. It appears from numerical experiments that new so-
that generalizes that of Sec. Il. Since both the convolutionutions cannot be created but rather that weak coupling can
kernelH(t) and the functiorF;;(t) are continuous on (8;) favor nearly antisynchronous phase relationships, while

where e= 71+ ¢. Hence, by substitution of Eq16) into
Eqg. (15), we may form the integro-differential equation

de; t
%:_E(ﬁij"'fOH(t_t,)¢ij(t,)dt,+Fij(t)a (17

whereH(t)=oc%e” < and

t , (22)
+0'f e It + 9,0A)dt. (18
0
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FIG. 9. Interaction schematic for two pulse-coupled integrate-
jand-fire neurons with idealized dendritic structure. Synaptic input
occurs at synapses located a distafigérom the soma.

FIG. 8. Variation of periodA for the system defined in Fig. 7,
highlighting the functional significance of the strength of electrica
coupling in modulating system firing frequency.

strong electrical coupling can increase the synchrony of sgachieved using the formalism developed by Kuramoto and

lutions. More interesting is the observation that small®thersl7,18 and, in this particular instance, helps to isolate
changes in the strength of electrical coupling can lead tdhe contribution of dendritic structure to neuronal synchroni-

sharp changes in the period of oscillation. This can be seeftion- We show that the synchronous solution can change
in Fig. 8 for the corresponding plot of Fig. 7 for variation of 1OM stable to unstable as the point of synaptic input moves

the periodA with o. Such an effect has also been observedU"ther from the somgsee Fig. 9. Independent work by
for asynchronous periodic rhythms generated in a similac"00K [28] on cells connected by synapses at the ends of

system of two chaotic neurofig1]. From a functional point finite dendritic cableqwith variable space constantein-
of view the mixture of electrical and chemical coupling pro- forces these results. Both Crodk8] and Bressloff and
vides a high sensitivity for period regulation of the asynchro-C00mbes29] propose that this mechanism may be used by
nous periodic state. neural circuits, wherepy proximal connections encourage
synchrony and more distal encourage asynchrony or antisyn-
chrony.
IV. EFFECTS OF DENDRITIC STRUCTURE In general, cell membrane properties are such that there is
In general, the diffusive nature of dendrites means that th@ nonlinear relationship between membrane ionic current and
rihe transmembrane potent[@5,46. In fact a more realistic

single neuron somatic response is a convolution of the sy ) , a7
aptic input with the response function of the dendritic tree SCENario than so far considered is given by the equations

Furthermore, the precise ordering of the axonal fiber systerhzl*z)

in cortical regions suggest that the synaptic locations of in- _ 2 _

puts play a role in circuit functiofd2]. Rospars and Lansky (?V';f’t) =D J \;'éf’t) — i +E(&1), (23
=

[43] have described the response of a compartmental model
in which it is assumed that dendritic potentials evolve with- do
out any influence from the nerve impulse generation process. i

However, the electrical coupling between the soma and den-  dt f(@)FpdVi(O) = ¢i(D)],  0<¢i(t)<h.

drites means that there is a feedback signal across the den- (29
drites whenever the somatic potential resets. This situation is

described in detail by Bresslof44]. The basic idea is to Equation(23) is the standard cable equation for the dendritic
eliminate the passive component of the dynanitbe den- ~ potential V;(¢,t) of an unbranched dendrite on neuron
dritic potentia) to yield a Volterra integrodifferential equa- With dendritic coordinatée R*. The decay constant and
tion for the somatic potential. An iterative solution to the the diffusion constanD may be related to underlying cellu-
integral equation can be constructed in terms of a secon@r properties of dendritic tissue and in thgfollowing analysis
order map of the firing time, in contrast to a first order mapwe fix length and time scales by settibg=7=1. The soma

as found in models lacking dendritic structfi4s]. Unfortu-  is considered to be sited at positigr-0 on the cable and
nately, a description of two pulse-coupled compartmental;(t)=po[Vi(0t) — ¢;(t)] is the current density flowing to
models with reset is analytical unwieldy, although somethe soma from the cable. The equation for the dendritic po-
work on this problem has been done by Crdag]. How-  tential V;(¢,t) has inputE;(¢,t) representing the synaptic
ever, substantial progress can be made by considering thieput, taken to be absent at the soma. Equaii@8 is
dendritic tree of a neuron to be idealized as a semi-infinitssupplemented by the boundary conditiondV;/d¢|;_o
one-dimensional cabl82]. Furthermore, it is illuminating to  =Z;(t). Equation(24) (without the py-dependent coupling
work in the phaseinteraction representation, rather than theterm) for the somatic potentiad;(t) of a neuron was origi-
pulseinteraction picture used until now. This can be nally proposed by Abbott and Keplf47] through a system-
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atic reduction of the Hodgkin-Huxley equations. Further- de,

more, they have shown using experimental data ffét) a0~ He— 6, (30
can be fitted with a cubi47]. In order to simplify our analy-

sis, we shall assume that the current flowing from the somgith

to the dendrite is negligible, which amounts to imposing the

homogeneous boundary conditiN; /9&|:_,=0. After ab-

sorbing a term—pg¢; into the definition of the function _ J°° _

f(#;) in Eq. (24 we have thatZ;(t) is transformed to H(6)=g 0 dtJ(t=0)K(&.14) 3D
poVi(0t). We now solve Eq(23) for V;(&,t) in terms of the

synaptic inputs and se&t=0 to give and we have absorbed the factor gfy2within the coupling

strengthg. As discussed irf18], the functionJ(t) is the
. . phase interaction function of the model in the case of an
Ii(t)=2Pof dt’J de'K (&' t—t)Ei(¢'t'), (25  instantaneous synapse. The functiity) involves the con-
— 0 volution of the instantaneous interaction functidt) with
o _ the dendritic response functidf(&,,t), which depends ex-
where K(¢,t)=e "¢/ /47t is the response or Green's plicitly on the locationé, of the synapse on the dendritic
function of the infinite cable equation. For concreteness weable. It follows thatH(6) can be written as a function of the
consider synaptic input on the cable to impinge at locafipn phase differencef=6,— 6,, by invoking the periodicity
only such that properties of)(t) andI(t). The evolution of the phase dif-
ference may now be written as

Ei(§,1)=0(£—&o)i(1) (26)
de
wherel;(t) has the form of Eq(4). —=—-G(0), G(O=HO—H(—0). (32
The analytical intractability of this model is much reduced dt

with the aid of averaging techniques valid in the limit of
weak coupling. Indeed a nonlinear transform may be used
study nonlinear integrate-and-fire neurons in the framewor
of pulse-coupled phase moddl]. In the uncoupled state S
each identical neuron is imagined to fire with a natural pe-l’ G(6) always has_zeros a$l=_0,1{2,1. For simplicity, we

riod A at times— 6,A. Weak coupling of the two neurons Shall takeJ(t)=—sin 2xt, which is known to be a good
will induce some relative phase relationship. The dynamicaftPProximation whenf of Eq. (24) has an experimentally
variable of interest in the weak-coupling regime is the phas&€términed forni19]. Using the following Fourier represen-

of each oscillator. Specifically, followingL8] one can apply tion fzf _the 'kfgurjcg(ak)rpental cable 250|Uﬂ0nK(503t_)
the following nonlinear transform to E424): =(2m) " [ .dke*0 , wheree(k) =k“+ 1, the stability
function G(6) becomes

t§olutions can be found by solving EB2) for @ in the
pteady state¢/(#) =0, with A given by Eqg.(27). Solutions
are stable iHG(8)/ 96> 0. SinceH(6) is periodic with period

0-(t)+l=w(¢-(t))zif¢i(t>ﬂ, (27 > dk
' A ! Ao (o) G(0)=g sin(Zwﬁ)j_wZ e'kéoA (k) (33)
with A= [}d¢'/f(¢’). The phase variable satisfy with
de,
gt SIWATO)T(Y), te(=6A(~6+1)A), A= e(k) o2 (34
(29 e(k)’+ w?’ A

where J_(Z)_=A_1/[f°¢_1(2)], and J(z+n)=J(2), neZ  Hence, stability is partly dependent upon whether
Neuroni fires wheng;=h or equivalently, from Eq(27), A=~ _dkd*éA(k)>0. The integral can be evaluated by

times aret=(n—6,)A and hence

L()=1(t+6;A), te[—6;A,(—6,+1)A), (29 Azrze”focow’z)[rgosin(,8/2)+ﬁl2], (35)

wherel(t) is given by Eq.(6) and I (t+nA)=I1(t). How- )

ever, to simplify matters further still we shall drop discussionWith r*=y1+»” and tans=w, 0<B<m/2. We deduce

of transmission delays by settiig=0 and ignore the shape from Fig. 10 that as the distangg of the synapse from the
of postsynaptic currents so thhtt)=g=,8(t—nA). Now Soma increases from zerd,reaches a critical value where a
assume that the tertfA varies much more quickly than change in solution stability can occur. Increas#igstill fur-
either of thed;(t), which is true for weak coupling. Then we ther produces alternating bands of stability and instability for
can average the right side of E@8) over one periods and  solutions toG(#) =0. In fact, the synchronous staté=0,1)
substitute Eqs(25), (26), and(29) to obtain is stable forA>0 and the antisynchronous stat#=(1/2) is
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distance of synaptic input from the soma. For some ranges of
\ distance of the synapse from the soma the synchronous state
can be destabilised in favor of an antisynchronous periodic
rhythm. The more obvious delays inherent in many neuronal
systems come in the form of communication delays. Not
only can these discrete delays lead to stable asynchronous
solutions for fast synaptic responses, but they allow the for-
mation of multiple stable periodic orbits with the same phase
but differing period. Hence, they are obviously important in
the construction of memory devicg38]. An interesting is-
sue arises concerning transitions between these attractors and
will be addressed elsewhere. Moreover, delays of the above
type have other important consequences in larger systems
than those considered here. Interestingly, if the effective
communication delay between neurons in a one-dimensional
0 2 4 6 8 10 12 14 16 . : . .
® array of weakly coupled integrate-and-fire neurons is suffi-
. ciently large, then the synchronous state can be destabilized
FIG. 10. Sign ofA, & vs w. Black (white) regions correspond in favor of a state of stable traveling waves. This picture is
to A>0 (A<O0). Note the checkerboard pattern of stability- valid when effective somatic responses fast compared to
instability, for say the synchronous solution, with increasing synapthe natural frequency of neuronal oscillation, but is altered in
tic distance£,, for a fixed natural neuronal oscillator frequensy  the presence of say slow synapses or dendritic structure as
expected from the results presented Heee[30] for further
stable forA<O0 for excitatory coupling ¢>0). A similar  discussion The distributed and discrete delays arising natu-
checkerboard structure of stable-unstable solutions with int@lly in neuronal systems may therefore be responsible for
creasing axonal communication delay is seen in Figs. 3—ghe oscillatory waves observed in such structures as the ol-
Hence, &, plays an analogous role to that of a time delay,factory cortex where distributed delays arise from both syn-
since the time of maximal response at the soma due to a@Ptic and dendritic properties and discrete delays arise from
input at&, increases witht,. Interestingly thistime to peak the large axonal separations between neuf@29. An

can be as large as a few hundred msec whereas axonal deldJPortant source of control of the period of the system re-
are typically 1-10 msec. sides in the strength of electrical connections between neu-

rons. The combination of synaptic and gap junctions is typi-

cal for many small CPG circuits found in invertebrates. The
V. DISCUSSION sharp variation of period with small change in strength of
£lectrical coupling is also observed by Hueetaal. [41], for

neuron models is of great importance in modeling the genEhe case of two coupled chaotic neurons, who suggest that

eration of biological rhythms. In general, neuronal pools Car{he function of such a combination is to allow modulation of

produce antisynchronous, asynchronous, as well as synchrEEe period of asynchrono_us rhythms. Such a result_highlights
nous firing patterns. Hence, identifying the biological fea-IN€ Importance of exploring the consequences of simple bio-

tures that lead to such behaviors is important. In this pEjlpellogical features in establishing rhythmic behavior in coupled

we have focused on a very simple model of a central patterﬂeuron"jll systems, Sif‘ce usefgl conplusions can be drawn
generato(CPQ built from two pulse-coupled integrate-and- ab_out neurophysmlogpal fgnctlon. Finally, let us make the
fire neurons. The inclusion of simple measures of axonaPo!nt thﬁ_t hmanly CPG circuits arle_ o:]_LH!alf-cfenter:ME] va-
propagation delay, the pulse shape of postsynaptic currentd€ty» Which rely upon reciprocal inhibition for rhythm gen-

and electrical synapses can all be analyzed using elementaI rttr'](_)n rather than re_mproce:l excr:]ltat.|o|n as fcf)nsgdered hhere.
analysis in conjunction with numerical techniques for con- IS case one requires extra physiological factors such as

structing bifurcation diagrams. The inclusion of a dendriticpofg'nh'b'tory rebofuncﬂﬁgﬁq or the mCIUS'OT ofhan exter-f
structure complicates such an approach, yet it is a vital comP@ driving current for rhythm maintenance. In the case of a

ponent of most single-neuron anatomies. However, the sp 1alf-center oscillator with reciprocal inhibition and a suffi-

tiotemporal filtering properties of dendrites can be isolateq‘:ie”r;‘Iy Iat:ge exter?al driving lemg!(?o thgt firi(jng can occur
with a reduction of the model, valid for intrinsically oscillat- in the absence of any couplipgbifurcation diagrams are

ing weakly coupled neurons. Moreover, such a reduc(_:.(gualitatively the same as those presented here, but with a
model is exactly solvable. By maintaining contact with neu-"€versal of stability for all solution branches.
rophysiological reality both discrete and distributed delays

14
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The nonlinear dynamics of populations of pulse-couple
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